Effects of seasonal changes in vegetation cover on the hydrological responses of the Chemora Wadi catchment to extreme rainfall
Abstract
The choice of the reference flood for the dimensioning of hydraulic structures is rather delicate, in particular in the not gauged basins. In these basins, the estimation of the project flood requires the use of predetermined methods based on the maximum daily precipitation. In this context, this work consists of evaluating the impact of seasonal changes in vegetation cover on the hydrological responses of the watershed to extreme precipitation events in terms of peaks and water volumes using the HEC-HMS model. The study was based on rainfall and discharge data recorded at rainfall and hydrometric stations in the Wadi Chemora basin (Algeria), in addition to remote sensing data on a monthly scale. The results show that the estimation of the projected flood using methods based only on maximum daily rainfall in semi-arid areas is insufficient, which shows the interest of considering the effects of these changes.
Key words: curve number, extreme floods, HEC-HMS, NDVI, Wadi Chemora watershed, rain-flow
© 2024 Serbian Geographical Society, Belgrade, Serbia.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia.
Full Text:
PDFReferences
Abdi, I., & Meddi, M. (2020). Comparison of conceptual rainfall – runoff models in semi-arid watersheds of eastern Algeria. Journal of Flood Risk Management, 14(1), Article e12672. https://doi.org/10.1111/jfr3.12672
Abdi, I., & Meddi, M. (2020). Study on the applicability of the SCS-CN-based models to simulate floods in the semi-arid watersheds of northern Algeria. Acta Geophysica, 69, 217–230. https://doi.org/10.1007/s11600-020-00511-3
Arshad A., Christiaan V., & Fati, A. (2020). Modeling hydrological response to land use/cover change: case study of Chirah Watershed (Soan River), Pakistan. Arabian Journal of Geosciences, 13(22), Article 1220. https://doi.org/10.1007/s12517-020-06177-x
Arnoldus, H. M. J. (1977). Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bulletin, 34, 39-51.
Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., & Piccinni, A. F. (2016). Land use change impact on flooding areas: The case study of Cervaro basin (Italy). Sustainability, 8(10), Article 996. https://doi.org/10.3390/su8100996
Babel, M. S., Najim, M. M. M., & Loof, R. (2004). Assessment of agricultural nonpoint source model for a watershed in tropical environment. Journal of Environment Engineering, 130(9), 1032-1041. https://doi.org/ 10.1061/(ASCE)0733-9372(2004)130:9(1032)
Benifei, R., Solari, L., Vargas-Luna, A., Geerling, G., & Van Oorschot, M. (2015). Effect of Vegetation on Floods: The Case of the River Magra. IAHR World Congress 2015. https://doi.org/10.13140/RG.2.1.3057.8004
Berghout, A., & Meddi, M. (2016). Sediment transport modeling in wadi Chemora during flood flow events. Journal of Water and Land Development, 31(10-12), 23–31. https://doi.org/10.1515/jwld-2016-0033
Berghout, A. (2017). Modeling of solid transport in certain watersheds in North-East Algeria [Thèse de doctorat, Béjaia University].
Blondel, J., & Aronson, J. (1999). Biology and wildlife of the Mediterranean region. Oxford University Press.
Cane, C. (1985). Etude d'un modèle pluie - débit type SCS (Soil Conservation Service) Application au bassin versant de l'Aille 'VAR. Office of Geological and Mining Research, Department Marine Geology and Sedimentology.
Cerdà, A. (1998). The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78(2), 321-330. https://doi.org/10.4141/S97-060
Chang, C. W. (2009). Application of SCS CN Method in HEC-HMS in Shih Men Watershed - Simulation of Rainfall Runoff Hydrologic Model [Doctoral dissertation, Florida State University].
Combes, F., Hurand, A., & Meunier, M. (1995). La forêt de montagne: un remède aux crues. Journées de l'hydraulique, 23(2), 481-486.
Fehri, N. (2014). L'aggravation du risque d'inondation en Tunisie: éléments de reflexion. Géographie Physique et environnement, 8, 149-175. https://doi.org/10.4000/physio-geo.3953
Hu, S., & Shrestha, P. (2020). Examine the impact of land use and land cover changes on peak discharges of a watershed in the mid-western United States using the HEC-HMS model. Papers in Applied Geography, 6(2), 101-118. https://doi.org/10.1080/23754931.2020.1732447
Hssaine, A. A. (2014). Éléments sur l'hydrologie de la partie atlasique de l'oued Guir (Maroc sud-oriental) et sur l'inondation catastrophique du 10 octobre 2008. Géographie Physique et environnement, 8, 337-354. https://doi.org/10.4000/physio-geo.4292
Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Rainfall-runoff modelling of Doddahalla watershed—an application of HEC-HMS and SCN-CN in ungauged agricultural watershed. Arabian Journal of Geosciences, 9, Article 170. https://doi.org/10.1007/s12517-015-2228-2
Ioannidou, V. G., & Arthur, S. (2020). Experimental results of the hydrological performance of a permeable pavement laboratory rig. Journal of Water Supply: Research and Technology—Aqua, 69(3), 210-223. https://doi.org/10.2166/aqua.2020.118
Johnson, F., Xuereb, K., Jeremiah, E., & Green, J. (2012). Regionalisation of rainfall statistics for the IFD revision project. 34th Hydrology and Water Resources Symposium.
Koneti, S., Sunkara, S. L., & Roy, P. S. (2018). Hydrological Modeling with Respect to Impact of Land-Use and Land-Cover Change on the Runoff Dynamics in Godavari River Basin Using the HEC-HMS Model. International Jornal of Geo-Information, 7(6), Article 206. https://doi.org/10.3390/ijgi7060206
Lavabre, J., Andreassian, V., & Laroussinie, O. (2000). Eaux et forêts: la forêt, un outil de gestion des eaux? La Houille Blanche, 88(3), 72-77. https://doi.org/10.1051/lhb/2002047
Li, W., & Sankarasubramanian, A. (2012). Reducing hydrologic model uncertainty in monthly stream flow predictions using multimodel combination. Water Resources Research, 48(12), 1-17. https://doi.org/10.1029/2011WR011380
Meddi, M., Toumi, S., & Assani, A. A. (2017). Application of the L-moments approach to the analysis of regional flood frequency in Northern Algeria. International Journal of Hydrology Science and Technology, 7(1), 77 – 102. https://doi.org/10.1504/IJHST.2017.080959
McIvor, J. G., Williams, J., & Gardener, C. J. (1995). Pasture management influences runoff and soil movement in the semi-arids tropics. Australian Journal of Experimental Agriculture, 35(1), 55-65.
Mendas, M., Errih, M., & Bouchenak, F. (2008). Hydrologic model combined with a GIS for estimating hydrologic balance at watershed scale: application to the Macta watershed (north-western Algeria). Journal of Water Supply: Research and Technology—Aqua, 57(5), Article 360. https://doi.org/10.2166/aqua.2008.039
Nazari-Sharabian, M., Taheriyoun, M., & Karakouzian, M. (2020). Sensitivity analysis of the DEM resolution and effective parameters of runoff yield in the SWAT model: a case study. Journal of Water Supply: Research and Technology—Aqua, 69(1), 39-54. https://doi.org/10.2166/aqua.2019.044
National Hydric Resources Agency. (2005). Annuaire des précipitations de l'Algérie (Rainfall directory of Algeria). National Hydric Resources Agency.
Razavi, T., & Coulibaly, P. (2012). Stream flow prediction in ungauged basins: review of regionalization methods. Journal of Hydrologic Engineering, 8(8), 958–975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
Richard, D., & Mathys, N. (1999). Historique, contexte technique et scientifique des BVRE de Draix. Caractéristiques, données disponibles et principaux résultats acquis au cours de dix ans de suivi. Proceedings of the conference “The experimental water sheds of Draix, laboratory for the study of mountain erosion”.
Sarhadi, A., & Modarres, R. (2011). Flood seasonality-based regionalization methods: a data based comparison. Hydrological Process, 25(23), 3613–3624. https://doi.org/10.1002/hyp.8088
Scharffenberg, W. (2016). Hydrological Modeling System HEC-HMS. User’s Manual. Hydrologic Engineering Center.
Shrestha, B. B. (2019). Approach for Analysis of Land-Cover Changes and Their Impact on Flooding Regime. Quaternary, 2(3), Article 27. https://doi.org/10.3390/quat2030027
United States Agency for International Development. (2010). Hydrology National Engineering Handbook. United States Agency for International Development
United States Army Corps of Engineers. (2013). Hydrologic Modeling System HEC-HMS Version 4,0. United States Army Corps of Engineers.
Velázquez, J. A., Anctil, F., & Perrin, C. (2010). Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments. Hydrology and Earth System Sciences, 14(11), 2303–2317. https://doi.org/10.5194/hess-14-2303-2010
Yahi, A., & Rezoug, B. (2019). Modélisation Hydrologique (pluie - débit) pour plusieurs Scénarios d’occupation du sol cas du Bassin Versant de Chemora –Batna [Master's thesis, Msila University].
Zheng, Y., Li, J., Dong, L., Rong, Y., Kang, A., & Feng, P. (2020). Estimation of Initial Abstraction for Hydrological Modeling Based on Global Land Data Assimilation System–Simulated Data sets. Journal of Hydrometeorology, 21(5), 1051-1072. https://doi.org/10.1175/JHM-D-19-0202.1
Refbacks
- There are currently no refbacks.