Screening of pollution for the reclamation of industrial land: evaluation of geological background data

József Denső, Amadé Halász, Viktória Poór, Dénes Lóczy

Abstract


The paper focuses on the results of rapid, combined multi-techniques in field measurements influenced by the geological background, which allow the survey of extensive polluted areas and decision support systems. The investigated area (former briquette factory) is highly contaminated by Total Petrol Hydrocarbon-types (TPHs). Heavy metals were investigated with GC-MS, turbidimetric, Raman-spectroscopic method, and with XRF. Qualitative assessment of alkanes, alkenes and alkines as well as aromatic compounds was determined by Raman peak analysis. The areas contaminated with Cr, Zn, Co and carcinogenic hydrocarbons, are in most cases absorbed in the coal powder matrix.


Key words: environmental assessment, TPH, metal contamination, Raman spectroscopy, gas chromatography, industrial area

© 2019 Serbian Geographical Society, Belgrade, Serbia.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia


Full Text:

PDF

References


Ahern, M., Mullett, M., MacKay, C. & Hamilton, K. (2011). Residence in Coal-Mining Areas and Low-Birth-Weight Outcomes. Matern Child, Health Journal 15, 974–979.

Agarwal, U. P. (ed. T. Hu) (2008). An Overview of Raman Spectroscopy as Applied to Lignocellulosic Materials, in Advances in Lignocellulosic Characterization, USA: Blackwell Publishing.

Boadi, D. (2012). Decommissioning and Reclamation of Mine Sites, International Journal of mining reclamation and environment, 26, 91-92.

Bowden, S. A., Alabi, O. O., Edilbi, A., Brolly, C., Muirhead, D., Parnell, J. & Stacey, R. (2015). Asphaltene detection using surface enhanced Raman scattering (SERS), Chem. Commun. 51, 7152–7155.

Burke, E. J. A. (2001). Raman microspectrometry of fluid inclusions, Lithos, 55, 139–158.

Carlon, C (ed.) (2007). Derivation methods of soil screening values in Europe, A review and evaluation of national procedures towards harmonization. European Commission, Joint Research Centre, Ispra, EUR 22805-EN, 306.

Castiglioni, C., Tommasini, M. & Zerbi, G. L. (2004). Raman spectroscopy of poly conjugated molecules and materials: confinement effect in one and two dimensions, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362(1824), 2425-2459.

Cicek, A. & Koparal, A. S. (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunc¸bilek Thermal Power Plant, Chemosphere, 57, 1031–1036.

Cooper, J. B., Wise, K. L., Welch, W. T., Sumner, M. B., Wilt, B. K. & Bledsoe, R. R. (1997). Comparison of Near-IR, Raman, and Mid-IR Spectroscopies for the Determination of BTEX in Petroleum Fuels, Applied Spectroscopy, 51(11), 1613-1620.

David, C., Weindorf, Paulette, L. & Man, T. (2013). In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania, Env. Poll. 182, 92–100.

Decree of the Minister of the Environment and Water, Minister of Health and Minister of Agriculture No 6/2009. (IV.14.) KvVM-EüM FVM

Decree No. 10/2000. (VI.2.) On quality standards of groundwater and geological agent protection. KöM-EüM-FVM-KHVM

Dick, D. P., Knicker, H., Avila, L., Inda, G., Giasson E. & Bissani, C. A. (2006). Organic matter in constructed soils from a coal mining area in southern Brazil, Organic Geochemistry, 37, 1537–1545.

Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration (Daughter to 2000/60/EC)

Haas, J., Budai, T., Csontos, L., Fodor, L. & Konrád, K. (2010). Magyarország pre-kainozoos földtani térképe 1:500000 (Pre-Cenozoic geological map of Hungary, 1:5000000), MÁFI Geological Institute of Hungary.

Haibin, L. & Zhenling, L. (2010). Recycling utilization patterns of coal mining waste in China, Resources, Conservation and Recycling, 54, 1331–1340.

Izake, E. L. (2010). Forensic and homeland security applications of modern portable Raman spectroscopy, Forensic Science International, 202, 1–8.

Kalnicky, D. J. & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, On-site Analysis. 83(1–2), 93–122.

Kelemen, S. R. & Fang, H. L. (2001). Maturity Trends in Raman Spectra from Kerogen and Coal, Energy & Fuels, 15, 653–658.

Kolomijeca, A., Kwon, Y. H., Sowoidnich, K., Prien, R. D., Schulz-Bull, D. E. & Kronfeldt, H. D. (2011). High Sensitive Raman Sensor for Continuous In-situ Detection of PAHs. Proceedings of the Twenty-first International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, June 19-24.

Lambert, J. B., Shurvell, H. F. & Cooks, R. G. (1987). Introduction to organic spectroscopy, Macmillan.

Leyton, P., Sanchez-Cortes, S., Campos-Vallette, M., Domingo, C., Garcia-Ramos, J. V. & Saitz, C. (2005). Surface-Enhanced Micro-Raman Detection and Characterization of Calix[4]Arene–Polycyclic Aromatic Hydrocarbon Host–Guest Complexes, Applied Spectroscopy, 59(8), 1009-1015. PMID:16105209

Lyon, L. A., Keating, C. D., Fox, A. P., Baker, B. E., He, L., Nicewarner, S. R., Mulvaney, S. P. & Natan, M. J. (1998). Raman Spectroscopy Analytical Chemistry, 70(12), 341–361.

Lin-Vien, D., Colthup, N., Fateley, W. & Grasselli, J. (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego.

Lóczy, D., Czigány, Sz., Dezső, J., Gyenizse, P., Kovács, J., Nagyváradi, L. & Pirkhoffer, E. (2007). Geomorphological tasks in planning the rehabilitation of coal mining areas at Pécs, Hungary. Geografia física e dinamica quaternaria, 30, 203–207.

Nagy, E. (1971). Der unterliassiche Schichtenkomplex von Grestener Fazies im Mecsek-Gebirge (Ungarn), Ann. Inst. Geol. Publ. Hung, 54(2), 155-159.

Némedi, V. Z. (1987). Paläogeographische Verhältnisse während der Ablagerung der obertriassisch-unterliassischen Schichtenfolge im Mecsek-Gebirge (SO-Transdanubien), Publ. Techn. Univ. Heavy Industry, Miskolc, Ser. A. Mining, 43(1-4), 61-87.

Ökoproject Eger Ltd. (2008). MÁV Zrt Nagymányok Környezetvédelmi szűrővizsgálatok (Hungarian), National Railways Close Corporation Nagymányok (former Briquette Factory) Environmental screening test. Manuscript, MÁV, Pécs.

Panov, B. S., Dudik, A. M., Shevchenko O. A. & Matlak, E. S. (1999). On pollution of the biosphere in industrial areas: the example of the Donets coal Basin. International Journal of Coal Geology, 40, 199–210.

Pfannkuche, J., Lubecki, L., Schmidt, H., Kowalewska G. & Kronfeldt, H. D. (2012). The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea), Marine Pollution Bulletin, 64, 614–626.

Powell, J., Jain, P., Bigger, A. & Townsend, T. Development and Application of a Framework to Examine the Occurrence of Hazardous Components in Discarded Construction and Demolition Debris: Case Study of Asbestos-Containing Material and Lead-Based Paint, J. Hazard. Toxic Radioact. Waste, 10.1061/(ASCE) HZ.2153-5515.0000266, 05015001

Rainbow, A. K. (ed) (1987). Reclamation, treatment and utilization of coal mining wastes, Rotterdam.

Raman database, Universitá Degli Studi di Parma, Departement of Physics and Earth Sciences, Italy, last visited on 27.01.2016. Retrieved from http://www.fis.unipr.it/phevix/ramandb.php

Schenzel, K. & Fischer, S. (2004). Applications of FT Raman spectroscopy for the characterisation of cellulose, Lenzinger Berichte 83, 64–70.

SDBS (Spectral Database for Organic Compounds), National Institute of Advanced Industrial Science and Technology (AIST),

Silva, S. L., Silva, A. M. S., Ribeirob, J., Martins, C. F. G., Da Silva, F. & Silva, C. (2011). Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy. A review. Analytica Chimica Acta, 707, 18–37.

Somos, L. (1965). A geological description of the Upper Triassic and of the coal bearing Lower Liassic Complex of the Mecsek mountains, Acta Geol. Acad. Sci. Hung., 9, 363–373.

Tanabe, K. & Hiraishi, J. Retrieved from http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi last visisted: 29.01.2016.

Tommasini, M. & Zerbi, G. (2010). A theoretical Raman study on Polycyclic Aromatic Hydrocarbons of environmental interest. Chemical Engineering Transactions, 22, 263–268.

USDA (United States Department of Agriculture, Natural Resources Conservation Service) 2004: Soil survey laboratory methods manual. Version No. 4.0. Soil Survey Investigations Report No. 42.

Van Cott, R. J., McDonald, B. J. & Seelos, A. G. (1999). Standard soil sample preparation error and comparison of portable XRF to laboratory AA analytical results. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422(1–3), 801–804.

Yenilmez, F., Kuter, N., Emil, M. K. & Aksoy, A. (2011). Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS, International Journal of Coal Geology, 86, 12–19.

Zemo, D., Bruya, J. E. & Graf, T. E. (1995). The application of petroleum hydrocarbon fingerprint characterization in site investigation and remediation, Ground Water Monitoring and Remediation, 15(2), 147–156.

Zhang, N., Tian, Z., Leng, Y., Wang, H., Song, F. & Meng, J. (2007). Raman characteristics of hydrocarbon and hydrocarbon inclusions. Sci China Ser D-Earth Sci, 50. 1171–1178.


Refbacks

  • There are currently no refbacks.