Analysis of land surface temperatures in the "Local Climate Zones" of Novi Sad (Serbia)

Stevan Savić, Jan Geletič, Dragan Milošević, Michal Lehnert

Abstract


In this study, the Local Climate Zones (LCZs) in Novi Sad, the second largest city in Serbia, are analysed as to surface temperature differences. The LCZs were delineated on the basis of the GIS-based method created by Geletič & Lehnert (2016). Land Surface Temperatures (LSTs) were derived from the satellites Terra, sensor ASTER, and LANDSAT-8. The thermal images were provided at a similar time (at about 9.30 AM) between 2002 and 2008 (ASTER) and between 2013 and 2017 (LANDSAT-8). Statistical analyses, including the analysis of variance (ANOVA) and Tukey-HSD test, were employed to reveal LST differences between the LCZs. The results indicate that in 84% of cases there were significant differences in LST between pairs of LCZs. Temperature differences between LCZs were the most pronounced in the summer season. In general, 8 (large low-rise), 10 (heavy industry), 2 (compact midrise) and 3 (compact low-rise) LCZs had the highest surface temperatures in Novi Sad. Contrary to this, LCZs A (dense trees), B (scattered trees) G (water bodies) were the coolest zones.


Key words: urban climate, urban surface, Land Surface Temperature, Local Climate Zone, Novi Sad

© 2020 Serbian Geographical Society, Belgrade, Serbia.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia


Full Text:

PDF

References


Bechtel, B. & Daneke, C. (2012). Classification of local climate zones based on multiple earth observation data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1191-1202. DOI:10.1109/JSTARS.2012.2189873

Bechtel, B., Alexander, P.J., Jöhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L. & Stewart, I. (2015). Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS International Journal of Geo-Information, 4, 199-219. DOI:10.3390/ijgi4010199

Cai, M., Ren, C., Xu, Y., Lau, K.K.L. & Wang, R. (2017). Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology – A case study of Yangtze River Delta, China. Urban Climate, 24, 485-502. DOI:10.1016/j.uclim. 2017.05.010

Chen, L., Jiang, R. & Xiang, W.N. (2016). Surface heat island in Shanghai and its relationship with urban development from 1989 to 2013. Advances in Meteorology, 2016, ID 9782686, 15. DOI:10.1155/2016/9782686

Fabrizi, R., Bonafoni, S. & Biondi, R. (2010). Satellite and ground-based sensors for the urban heat island analysis in the city of Rome. Remote Sensing, 2, 1400-1415. DOI:10.3390/rs2051400

Geletič, J. & Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Report, 24(3), 2-12. DOI:10.1515/mgr-2016-0012

Geletič, J., Lehnert, M. & Dobrovolny, P. (2016). Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sensing, 8, 788. DOI:10.3390/rs8100788

Geletič, J., Lehnert, M., Savić, S. & Milošević, D. (2019). Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32. DOI: https://doi.org/10.1016/j.buildenv.2019.04.011

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World Map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. DOI:10.1127/0941-2948/2006/0130

Lelovics, E., Unger, J., Gál, T. & Gál, C.V. (2014). Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modeling. Climate Research, 60, 51-62. DOI:10.3354/cr01220

Lelovics, E., Unger, J., Savić, S., Gál, T., Milošević, D., Gulyás, Á., Marković, V., Arsenović, D. & Gál, C.V. (2016). Intra-urban temperature observations in two Central European cities: a summer study. Idojaras, 120(3), 283-300.

Majkowska, A., Kolendowicz, L., Polrolniczak, M., Hauke, J. & Czernecki, B. (2017). The urban heat island in the city of Poznan as derived from Landsat 5 TM. Theoretical and Applied Climatology, 128, 769-783. DOI: https://doi.org/10.1007/s00704-016-1737-6

Oke, T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108, 1-24.

Peng, S., Piao, S, Ciais, P., Friedlingstein, P., Ottle, C., Breon, F.M., Nan, H., Chou, L. & Myneni, R.B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46, 696-703. DOI: https://doi.org/10.1021/es2030438

Roth, M., Oke, T.R. & Emery, W.J. (1989). Satellite-derived urban heat island from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing, 10(11), 1699-1720.

Rostam, M.G. & Beck, C. (2019). Towards the Determination of Driving Factors of Varying LST-LCZ Relationships – a Case Study over 25 Cities. Geographica Pannonica, 23(4), 289-307. doi:10.593 7/gp23-24238

Rozenstein, O., Qin, Z., Derimian, Y. & Karnieli, A. (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14, 5768-5780. DOI:10.3390/s14040 5768

Schwarz, N., Schlink, U., Franck, U. & Groβmann, K. (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators – and application for the city of Leipzig (Germany). Ecological Indicators, 18, 693-704. DOI:https://doi.org /10.1016/j.ecolind.2012.01.001

Sobrino, J.A., Li, Z.L., Stoll, M.P. & Becker, F. (1996). Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17, 2089-2114. DOI:10.1080/01431169608948760

Stewart, I.D. & Oke, T.R. (2012). Local Climate Zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879-1900. DOI:10.1175/BAMS-D-11-00019.1

Stewart, I.D., Oke, T.R. & Krayenhoff, E.S. (2014). Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, 34, 1062-1080. DOI:10.1002/joc.3746

USGS (2016). Department of the Interior. LANDSAT 8 (L8) Data Users Handbook (Version 2.0). U.S. Geological Survey LANDSAT Missions Web Site. Retrieved from: https://landsat.usgs.gov/docu ments/Landsat8DataUsersHandbook.pdf (accessed on 30 May 2016).

Voogt, J.A. & Oke, T.R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370-384. DOI: https://doi.org/10.1016/S0034-4257(03)00079-8

Zhou, B., Rybski, D. & Kropp, J.P. (2017). The role of city size and urban form in the surface urban heat island. Scientific Reports, 7, 4791. DOI: https://doi.org/10.1038/s41598-017-04242-2


Refbacks

  • There are currently no refbacks.