Analysis of Human Thermal Comfort in Central European city during summer of 2015: A case of Novi Sad (Serbia)

Dragan Milošević, Stevan Savić, Daniela Arsenović, Zorana Lužanin, Jelena Dunjić

Abstract


Urban meteorological network (UMN) was established in the Central European City of Novi Sad (Serbia) based on "local climate zones" (LCZs) system. Physiologically Equivalent Temperature (PET) index was used for the assessment of outdoor thermal comfort in the "built" and "land cover" LCZ classes of Novi Sad. The index was calculated in the RayMan software based on the meteorological, physiological as well as building and vegetation data. Temporal analysis was performed for extreme heat stress days (PETmax ≥ 41 °C), extreme heat stress hours (PETav ≥ 41 °C) and days with occurrence of "tropical nights" (Tmin > 20 °C) during exceptionally hot summer of 2015. Our results show that extreme heat stress hours are the least frequent in compact midrise LCZ 2, followed by dense trees LCZ A. On the contrary, countryside (low plants - LCZ D) showed to be the most uncomfortable area during daytime followed by compact low-rise areas (LCZ 3). Tropical nights are the most frequent in midrise LCZs 5 and 2 (40-46 nights) and decreasing towards open, sparsely built and natural LCZs (6-8 tropical nights in LCZs A and D). This is almost 800% decrease and it has implications for health and recreation of urban population and emphasizes the need for UMN development based on LCZ system.


Key words: outdoor thermal comfort, PET, Extreme Heat Stress, tropical nights, RayMan

© 2020 Serbian Geographical Society, Belgrade, Serbia.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia


Full Text:

PDF

References


ASHRAE (1966). Thermal comfort conditions, ASRAE standard 55.66, New York.

Bajšanski, I.V., Milošević, D.D. & Savić, S.M. (2015). Evaluation and improvement of outdoor thermal comfort in urban areas on extreme temperature days. Applications of automatic algorithms. Building and Environment, 94, 632-643. DOI:10.1016/j.buildenv.2015.10.019

Bajšanski, I., Stojaković, V. & Milošević, D. (2019). Optimizing Trees Distances in Urban Streets for Insolation Mitigation. Geographica Pannonica, 23(4), 329-336. DOI:10.5937/gp23-24242

Dunjić, J. (2019). Outdoor Thermal Comfort Research in Urban Areas of Central and Southeast Europe: A Review. Geographica Pannonica, 23(4), 359-373. DOI:10.5937/gp23-24458

Fanger, P.O. (1999). Thermal comfort. Danish Technical Press, Copenhagen.

Fischer, E.M. & Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3(6), 398-403. DOI:10.1038/NGEO866

Gál, T. & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206. DOI:10.1016/j.buildenv.2008.02.008

Geletič, J. & Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Report, 24(3), 2-12. DOI:10.1515/mgr-2016-0012

Gulyás, Á., Unger, J. & Matzarakis, A. (2006). Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Building and Environment, 41(12), 1713-1722. DOI: https://doi.org/10.1016/j.buildenv.2005.07.001

Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75.

ISO-7730 (1984). Moderate thermal environments - determination of the PMV and PPD indices and specification of the conditions for thermal comfort. ISO, Geneva.

Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S.P., Vautard, R., Donnelly, C., Koutroulis, A.G., Grillakis, M.G., Tsanis, I.K., Damm, A. & Sakalli, A. (2018). Climate impacts in Europe under +1.5 C global warming. Earth’s Future, 6(2), 264-285. DOI: 10.1002/2017EF000710

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259-263. DOI: 10.1127/0941-2948/2006/0130

Lau, K.K.L., Chung, S.C. & Ren, C. (2019). Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment, 154, 227-238. DOI: https://doi.org/10.1016/j.buildenv.2019. 03.005

Lelovics, E., Unger, J., Gál, T. & Gál, C.V. (2014). Design of an urban monitoring network based on local climate zone mapping and temperature pattern modelling. Climate Research, 60, 51-62. DOI: 10.3354/cr01220

Lelovics, E., Unger, J., Savić, S., Gál, T.M., Milosevic, D., Gulyás, Á., Markovic, V., Arsenovic, D. & Gál, C. (2016). Intra-urban temperature observations in two Central European cities: a summer study. Időjárás/Quarterly Journal of The Hungarian Meteorological Service, 120(3), 283-300.

Lenzholzer, S. & Koh, J. (2010). Immersed in microclimatic space: Microclimate experience and perception of spatial configurations in Dutch squares. Landscape and Urban Planning, 95(1-2), 1-15. DOI: https://doi.org/10.1016/j.landurbplan.2009.10.013

Matzarakis, A., Rutz, F. & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments: application of the RayMan model. International Journal of Biometeorology, 51, 323-334. DOI: 10.1007/s00484-006-0061-8

Milošević, D.D., Savić, S.M., Marković, V., Arsenović, D. & Šećerov, I. (2016). Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin, 65(2), 129-137. DOI: 10.15201/hungeobull.65.2.4

Milošević, D.D., Bajšanski, I.V. & Savić, S.M. (2017). Influence of changing trees locations on thermal comfort on street parking lot and footways. Urban Forestry & Urban Greening, 23, 113-124. DOI: http://dx.doi.org/10.1016/j.ufug.2017.03.011

Müller, N., Kuttler, W. & Barlag, A.B. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115 (1-2), 243-257. DOI: 10.1007/s00704-013-0890-4

Muthers, S., Matzarakis, A. & Koch, E. (2010). Climate change and mortality in Vienna-a human biometeorological analysis based on regional climate modeling. International journal of environmental research and public health, 7(7), 2965-2977. DOI: 10.3390/ijerph7072965

Nakamura, Y. & Oke, R. (1988). Wind, temperature and stability conditions in an east – west oriented urban canyon. Atmospheric Environment,22, 2691–2700. DOI:10.1016/0004-6981(88)90437-4

Oke, T.R. (1987). Boundary Layer Climates. Routledge, London and New York, NY.

Paramita, B. & Matzarakis, A. (2019). Urban morphology aspects on microclimate in a hot and humid climate. Geographica Pannonica, 23(4), 398-410. DOI: 10.5937/gp23-24260

Schar, C., Vidale, P.L., Luthi, D. & Frei, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(6972), 332. DOI:10.1038/nature02230

Skarbit, N., Stewart, I.D., Unger, J. & Gál, T. (2017). Employing an urban meteorological network to monitor air temperature conditions in the "local climate zones" of Szeged, Hungary. International Journal of Climatology, 37(1), 582–596. DOI: 10.1002/joc.5023

Stewart, I.D. & Oke, T.R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879-1900. DOI: 10.1175/BAMS-D-11-00019.1

Šećerov, I., Savić, S., Milošević, D., Marković, V. & Bajšanski, I. (2015). Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, 19(4), 174-183. DOI:10.18421/GP19.04-03

Šećerov, I.B., Savić, S.M., Milošević, D.D., Arsenović, D.M., Dolinaj, D.M. & Popov, S.B. (2019). Progressing urban climate research using a high-density monitoring network system. Environment Monitoring and Assessment, 191(2), 89. DOI:10.1007/s10661-019-7210-0

UN (2014). World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352). Department of Economic and Social Affairs, Population Division, United Nations.

Unger, J., Savić, S. & Gál, T. (2011). Modelling of the Annual Mean Urban Heat Island Pattern for Planning of Representative Urban Climate Station Network. Advances in Meteorology, 2011, 1-9. DOI: 10.1155/2011/398613


Refbacks

  • There are currently no refbacks.