Micrometeorogical measurements and biometeorogical survey in different urban settings of Novi Sad (Serbia)

Milica Vasić, Dragan Milošević, Stevan Savić, Dajana Bjelajac, Daniela Arsenović, Jelena Dunjić


Due to rapid urbanisation, urban microclimate research has become increasingly popular in the last decade. Significant variation in microclimate conditions can be created due to diversity in urban geometry and it can affect outdoor thermal comfort. Biometeorological measurements and survey were conducted in different urban settings (square, park, street) of the city of Novi Sad during a warm autumn day in October 2019. Air temperature, relative humidity, wind speed and globe temperature, but also outdoor thermal comfort indices such as Mean Radiant Temperature (Tmrt) and Physiological Equivalent Temperature (PET) were obtained for each location. The largest differences in the biometeorological conditions are noticed between the urban park and other urban areas. The maximum average value of Ta was at the city square with 27.9 oC, while in the urban park and street Ta were about 25 oC. The values of RH were the lowest at the city square. Globe temperature (Tg) had the highest values, on average, at the city square (about 40 oC), while the average values in the urban park and street were about 26–28 oC. The highest average PET values are registered at the city square (41.4 oC), followed by substantially lower average PET registered in urban park (27.1 oC) and urban street canyon (26.2 oC). The analysis showed that during about 70% of the time, urban dwellers experience extreme heat stress at the city square. Contrary to that, no extreme heat stress is noticed in urban park and street canyon.

Keywords: thermal comfort, biometeorological measurements, biometeorological survey, urban park, Novi Sad, Serbia

© 2022 Serbian Geographical Society, Belgrade, Serbia.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia.

Full Text:



Dimoudi, A., Kantzioura, A., Zoras, S., Pallas, C., & Kosmopoulos, P. (2013). Investigation of urban microclimate parameters in an urban center. Energy and Buildings, 64, 1-9. DOI:10.1016/j.enbuild.2013.04.014

Fang, Z., Zheng, Z., Feng, X., Shi, D., Lin, Z., & Gao, Y. (2021). Investigation of outdoor thermal comfort prediction models in South China: A case study in Guangzhou. Building and Environment, 188, Article 107424. DOI:10.1016/j.buildenv.2020.107424

Fricke, C., Pongrácz, R., Gál, T. M., Savić, S., & Unger, J. (2020). Using local climate zones to compare remotely sensed surface temperatures in temperate cities and hot desert cities. Moravian Geographical Reports, 28(1), 48-60. DOI:10.2478/mgr-2020-0004

Gál, C. V., & Kántor, N. (2020). Modeling mean radiant temperature in outdoor spaces, A comparative numerical simulation and validation study. Urban Climate, 32, Article 100571. DOI:10.1016/j.uclim.2019.100571

Geletič, J., Lehnert, M., Savić, S., & Milošević, D. (2019). Inter-/intrazonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Building and Environment, 156, 21-32. DOI:10.1016/j.buildenv.2019.04.011

Holst, J. & Mayer, H. (2011). Impacts of street design parameters on humanbiometeor-ological variables. Meteorologische Zeitschrift, 20(5), 541-552. DOI:10.1127/0941-2948/2011/0254

Ichinose, T., Shimodozono, K., & Hanaki, K. (1999). Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric Environment, 33(24-25), 3897-3909. DOI:10.1016/S1352-2310(99)00132-6

International Organization for Standardization. (1998). ISO 7726: Ergonomics of the thermal environment—instruments for measuring physical quantities. International Organization for Standardization.

Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, 54, 1002-1017. DOI:10.1016/j.rser.2015.10.104

Johansson, E., Yahia, M. W., Arroyo, I., & Bengs, C. (2018). Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador. International journal of biomete-orology, 62(3), 387-399. DOI:10.1007/s00484-017-1329-x

Kántor, N., Gál, C. V., Gulyás, Á., & Unger, J. (2018). The impact of façade orientation and woody vegetation on summertime heat stress patterns in a central European square: comparison of radiation measurements and simulations. Advances in Meteorology, 2018, Article 2650642. DOI:/10.1155/2018/2650642

Kottek, M. (2006). World map of the Koppen-Geiger climate classification updated. Meteorol Z, 15, 259-263.

Kovács, A., & Németh, Á. (2012). Tendencies and differences in human thermal comfort in distinct urban areas in Budapest, Hungary. Acta Climatologica et Chorologica, 46, 115-124.

Kuang, W. (2020). Seasonal variation in air temperature and relative humidity on building areas and in green spaces in Beijing, China. Chinese Geographical Science, 30(1), 75-88. DOI:10.1007/s11769-01097-0

Lau, K. K. L., Chung, S. C., & Ren, C. (2019). Outdoor thermal comfort in different urban settings of subtropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Building and Environment, 154, 227-238. DOI:10.1016/j.buildenv.2019.03.005

Lehnert, M., Tokar, V., Jurek, M., & Geletič, J. (2021). Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 65(8), 1277-1289. DOI:10.1007/s00484-020-02010-y

Lelovics, E., Unger, J., Savić, S., Gál, T. M., Milošević, D., Gulyás, Á., & Gál, C. V. (2016). Intra-urban temperature observations in two Central European cities: a summer study. Időjárás/Quarterly Journal of The Hungarian Meteorological Service, 120(3), 283-300.

Lindberg, F., & Grimmond, C. S. B. (2011). Nature of vegetation and building morphology characteristics across a city: influence on shadow patterns and mean radiant temperatures in London. Urban Ecosystems, 14(4), 617-634. DOI:10.1007/s11252-011-0184-5

Matzarakis, A., & Mayer, H. (1996). Another kind of environmental stress: thermal stress. World Health Organization newsletter, 18, 7-10.

Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International journal of biometeorology, 51(4), 323-334. DOI:/10.1007/s00484-006-0061-8

Matzarakis, A., Rutz, F., & Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International journal of bio-meteorology, 54(2), 131-139. DOI:10.1007/s00484-009 0261-0

Middel, A., AlKhaled, S., Schneider, F. A., Hagen, B., & Coseo, P. (2021). 50 grades of shade. Bulletin of the American Meteorological Society, 102(9), 1805-1820. DOI:10.1175/BAMS-D-20-0193.1

Middel, A., & Krayenhoff, E. S. (2019). Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Science of the total environment, 687, 137-151. DOI:10.1016/j.scitotenv.2019.06.085

Middel, A., Selover, N., Hagen, B., & Chhetri, N. (2016). Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. International journal of biometeorology, 60(12), 1849-1861. DOI:10.1007/s00484-016-1172-5

Milošević, D., Middel, A., Savić, S., Dunjić, J., Lau, K., & Stojsavljević, R. (2022). Mask wearing behavior in hot urban spaces of Novi Sad during the COVID-19 pandemic. Science of the Total Environment, 815, Article 152782. DOI:10.1016/j.scitotenv.2021.152782

Milošević, D., Savić, S., Kresoja, M., Lužanin, Z., Šećerov, I., Arsenović, D., Dunjić, J., & Matzarakis, A. (2021). Analysis of air temperature dynamics in the “local climate zones” of Novi Sad (Serbia) based on long-term database from an urban meteorological network. International Journal of Biometeorology, 66, 371-384. DOI:10.1007/s00484-020-02058-w

Milošević, D. D., Savić, S. M., Marković, V., Arsenović, D., & Šećerov, I. (2016). Outdoor human thermal comfort in local climate zones of Novi Sad (Serbia) during heat wave period. Hungarian Geographical Bulletin, 65(2), 129-137. DOI:10.15201/hungeobull.65.2.4

Milošević, D., Trbić, G., Savić, S., Popov, T., Ivanišević, M., Marković, M., Ostojić, M., Dunjić, J., Fekete, R., & Garić, B. (2022). Biometeorological conditions during hot summer days in diverse urban environments of Banja Luka (Bosnia and Herzegovina). Geographica Pannonica, 26(1), 29-45. DOI:10.5937/gp26-35456

Müller, N., Kuttler, W., & Barlag, A. B. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115(1), 243-257. DOI:10.1007/s00704-013-0890-4

Peron, F., De Maria, M. M., Spinazzè, F., & Mazzali, U. (2015). An analysis of the urban heat island of Venice mainland. Sustainable Cities and Society, 19, 300-309. DOI:10.1016/j.scs.2015.05.008

Republic Hydrometeorological Service of Serbia. (2019). Annual bulletin for Serbia. Republic Hydrometeorological Service of Serbia.

Statistical Office of the Republic of Serbia. (2022). Estimated population 2019. Statisti-cal Office of the Republic of Serbia.

Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. DOI:10.1175/BAMS-D-11-00019.1

Šećerov, I., Savić, S., Milošević, D., Marković, V., & Bajšanski, I. (2015). Development of an automated urban climate monitoring system in Novi Sad (Serbia). Geographica Pannonica, 19(4), 174-183. DOI:10.5937/GeoPan1504174S

Thorsson, S., Lindberg, F., Eliasson, I., & Holmer, B. (2007). Different methods for estimating the mean radiant temperature in an outdoor urban setting. Internation-al Journal of Climatology: A Journal of the Royal Meteorological Society, 27(14), 1983-1993. DOI:10.1002/joc.1537

Thorsson, S., Rayner, D., Lindberg, F., Monteiro, A., Katzschner, L., Lau, K. K. L., Campe, S., Katzschner, A., Konarska, J., Onomura, S., Velho, S., & Holmer, B. (2017). Present and projected future mean radiant temperature for three European cities. International journal of biometeorology, 61(9), 1531-1543. DOI:10.1007/s00484-017-1332-2

Top, S., Milošević, D., Caluwaerts, S., Hamdi, R., & Savić, S. (2020). Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave. Building and Environment, 185, Article 107103. DOI:10.1016/j.buildenv.2020.107103

Toparlar, Y., Blocken, B., Maiheu, B. V., & Van Heijst, G. J. F. (2018). The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium. International Journal of Climatology, 38, 303-322. DOI:10.1002/joc.5371

Zeng, Y., & Dong, L. (2015). Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. International journal of biometeorology, 59(1), 99-108. DOI:10.1007/s00484-014-0883-8


  • There are currently no refbacks.