Monitoring and Quantification of Rural Urbanisation. Case of Arris and Theniet Elabed, Algeria

Sabrina Soto, Abida Hamouda, Halim Rebah

Abstract


In recent decades, rural agglomerations in the Aurès (Algeria) have undergone an to increasing human pressure and major transformations within an uncontrolled urbanization leading not only to a loss of natural and agricultural areas but an intensive artificialization of ecosystems as well. Regular monitoring of urban growth and updated data of the present state of land use are key steps for any action striving for sustainability in the Aurès region. The main objective of this research is to assess and quantify the spatial growth of two rural communities of the Aurès: Arris and Teniet El Abed during the period 1992 – 2022, through a quantitative approach based on the use of multi- date satellite images and the application of landscape metrics. The results reveal a clear unevenly expansion of the urban fabric, with varying rates depending on the period considered, but a bit faster during the period (2002 – 2013). In addition, it appears that development of the urban patch followed at first a continuous mode of spatial growth, then transitioned to a more scattered and fragmented urban form. The study conclusions are not only useful for developing and implementing national policies and programs, but also for assessing and monitoring progress seeking achievement towards Sustainable Development Goals.

Key words: urban expansion, remote sensing, landscapes metrics, rural area, Aurès, sustainable development

© 2024 Serbian Geographical Society, Belgrade, Serbia.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia.


Full Text:

PDF

References


Aguejdad, R., & Laurence, H. (2016). Suivi de l’artificialisation du territoire en milieu urbain par télédétection et à l’aide de métriques paysagères. Application à une agglomération de taille moyenne, Rennes Métropole. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.27465

Ban, Y., & Yousif, O. (2016). Change detection techniques. In Y. Ban (Ed.), Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing (pp. 54-84). Springer, Cham.

Barrou, D. (2019). Les établissements humains anciens face à la micro urbanisation : Cas de Menaa, Teniet El Abed et Arris dans les Aurès [Doctoral dissertation, Mohamed Khider University, Biskra, Algérie].

Charles, B., & Stéphane, G. (2009). Classification supervisée et non supervisée des données de grande dimension. La Revue de Modulad, 40, 81-102. https://hal.science/hal-00394327

Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), Article 3172. https://doi.org/10.21105/joss.03172

Congalton, R., & Green, K. (2008). Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton: CRC press

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Review Article Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 25(9), 1565–1596. https://doi.org/10.1080/0143116031000101675

Daikh, A., & Debache-Benzegouta, S. (2022). Evaluation of the Urban Expansion of the Constantine Metropolitan Area Through Landsat Remote Sensing Combined with Landscape Metrics. International Journal of Innovative Studies in Sociology and Humanities , 7(12), 01-14. https://doi.org/10.20431/2456-4931.071201

Dechaicha, A., & Alkama, D. (2021). Suivi et quantification de l’urbanisation incontrôlée: une approche basée sur l’analyse multitemporelle des images satellitaires LANDSAT. Cas de la ville de Bou-Saada (Algérie). Revue Française de Photogrammétrie et de Télédétection, 223(1), 159–172. https://doi.org/10.52638/rfpt.2021.595

Gamba, P., & Dell’Acqua, F. (2016). Change Detection in Urban Areas: Spatial and Temporal Scales. In Y. Ban (Éd.), Multitemporal Remote Sensing: Methods and Applications (pp. 45-61). Springer, Cham

Geymen, A., & Baz, I. (2008). Monitoring urban growth and detecting land-cover changes on the Istanbul metropolitan area. Environmental Monitoring and Assessment, 136(1), 449–459. https://doi.org/10.1007/s10661-007-9699-x

Gulinck, T., & Wagendorp, T. (2002). References for fragmentation analysis of the rural matrix in cultural landscapes. Landscape and Urban Planning, 58(2-4), 137-146. http://dx.doi.org/10.1016/S0169-2046(01)00216-X

Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29(4), 369-399. https://doi.org/10.1016/j.compenvurbsys.2003.12.001

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456

Mas, J. F. (2000). Une revue des méthodes et des techniques de télédétection du changement. Canadian Journal of Remote Sensing, 26(4), 349 362. https://doi.org/10.1080/07038992.2000.10874785

McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Open Journal of Ecology, 6(11).

Oreste, T., Oloukoi, J., & Toko, I. (2019). Dynamique spatiale et structure du paysage dans la commune de Zè, Bénin. Conférence OSFACO: Des images satellites pour la gestion durable des territoires en Afrique, Cotonou, Bénin.

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124, 689-704. https://doi.org/10.1016/j.rse.2012.06.006

Singh, A. (1989). Digital Change Detection Techniques Using RemotelySensed Data. International Journal of Remote Sensing, 10(6), 989-1003. https://doi.org/10.1080/01431168908903939

Stehman, S. (1996). Estimating the kappa coefficient and its variance under stratified random sampling. Photogrammetric Engineering and Remote Sensing, 62(4), 401–407.

Wang, K., Zhou, W., Xu, K., Liang, H., Yu, W., & Li, W. (2017). Quantifying Changes of Villages in the Urbanizing Beijing Metropolitan Region: Integrating Remote Sensing and GIS Analysis. Remote Sensing, 9(5), 448. https://doi.org/10.3390/rs9050448

Wu, J., Jenerette, G. D., Buyantuyev, A., & Redman, C. L. (2011). Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecological Complexity, 8(1), 1-8. http://dx.doi.org/10.1016/j.ecocom.2010.03.002


Refbacks

  • There are currently no refbacks.