Mapping of very shallow geothermal potentials in rural areas of Bavaria

David Bertermann, Hans Schwarz, Mario Rammler, Nikola Jocić


Climate change is a rising issue which strongly influences contemporary society. Therefore, the utilization of sustainable non-fossil energy sources is one of the most important goals in order to reduce greenhouse gas emission. Utilization of geothermal energy for heating and cooling buildings or residential units is one of the significant steps in providing sustainable and renewable energy supply. This paper presents very Shallow Geothermal Potentials (vSGP) of German federal state Bavaria, with special focus on rural areas. Main goal of the study was to analyze the potentials for utilization of very shallow geothermal systems in terms of thermal conductivity and heat extraction. High-resolution soil maps containing information of grain size conditions served as an area-wide data basis for the research, while the analysis and visualization of the results were conducted by GIS software. Thermal conductivity as well as system-specific heat extraction were calculated depending on soil texture and climate conditions. Thermal conductivity results are intended to be further used as the basic parameter for planning and installing horizontal geothermal heating and cooling systems.

Key words: very shallow geothermal potentials (vSGP), thermal conductivity, heat extraction, sustainable cooling, rural area, Bavaria

© 2024 Serbian Geographical Society, Belgrade, Serbia.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia.

Full Text:



Abu-Hamdeh, N. H. (2003). Thermal Properties of Soils as affected by Density and Water Content. Biosystems Engineering, 86(1), 97–102.

Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil Thermal Conductivity Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Science Society of America Journal, 64(4), 1285–1290.

Assouline, D., Mohajeri, N., Gudmundsson, A., & Scartezzini, J.-L. (2019). A machine learning approach for mapping the very shallow theoretical geothermal potential. Geothermal Energy, 7(1), 19.

Bayer, P., Attard, G., Blum, P., & Menberg, K. (2019). The geothermal potential of cities. Renewable and Sustainable Energy Reviews, 106, 17–30.

Bayerisches Landesamt für Umwelt. (2024). Digitale Geologische Karte 1:25.000 (dGK25). Umwelt Atlas.

Bayerisches Staatdministerium für Ernährung, Landwirtschaft und Forsten. (2020). Lebensqualität steigern, Entwicklung fördern – so werden Gemeinden und Dörfer fit für die Zukunft. Bayerisches Staatdministerium Für Ernährung, Landwirtschaft Und Forsten.

Bayerisches Staatsministerium der Finanzen und für Heimat. (2019). Heimatbericht 2018—Entwicklung des ländlichen Raums. Bayerisches Staatsministerium der Fi-nanzen und für Heimat.

Bayerisches Staatsministerium für Wirtschaft, Energie und Technologie. (2018). Fortschrittsbericht zum Umbau der Energieversorgung Bayerns 2016/2017. Bayerisches Staatsministerium für Wirtschaft, Energie und Technologi.

Bayerisches Staatsministerium für Wohnen, Bau und Verkehr. (2020). Ländlicher Raum. Bayerisches Staatsministerium Für Wohnen, Bau Und Verkehr.

Bertermann, D., Klug, H., & Morper-Busch, L. (2015). A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renewable Energy, 75, 335–347.

Bertermann, D., Klug, H., Morper-Busch, L., & Bialas, C. (2014). Modelling vSGPs (very shallow geothermal potentials) in selected CSAs (case study areas). Energy, 71, 226–244.

Bertermann, D., Rammler, M., Wernsdorfer, M., & Hagenauer, H. (2024). A Practicable Guideline for Predicting the Thermal Conductivity of Unconsolidated Soils. Soil Systems, 8(2), 47.

Bundesministerium für Wirtschaft and Energie. (2019). Zweiter Fortschrittsbericht zur Energiewende—Die Energie der Zukunft—Berichtsjahr 2017—Kurzfassung. Bun-desministerium für Wirtschaft and Energie.

Cadelano, G., Cicolin, F., Emmi, G., Mezzasalma, G., Poletto, D., Galgaro, A., & Bernardi, A. (2019). Improving the Energy Efficiency, Limiting Costs and Reducing CO2 Emissions of a Museum Using Geothermal Energy and Energy Management Policies. Energies, 12(16), 3192.

Cansino, J. M., Pablo-Romero, M. del P., Román, R., & Yñiguez, R. (2011). Promoting renewable energy sources for heating and cooling in EU-27 countries. Energy Policy, 39(6), 3803–3812.

Casasso, A., Pestotnik, S., Rajver, D., Jež, J., Prestor, J., & Sethi, R. (2017). Assessment and mapping of the closed-loop shallow geothermal potential in Cerkno (Slovenia). Energy Procedia, 125, 335–344.

Casasso, A., & Sethi, R. (2017). Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy). Renewable Energy, 102, 306–315.

Deutsches Institut für Normung. (2016). DIN 4710:2003-01 Statistiken meteorologischer Daten zur Berechnung des Energiebedarfs von heiz- und raumlufttech-nischen Anlagen in Deutschland. Beuth Verlag GmbH.

Deutsches Institut für Normung. (2017). DIN 4220:2008-11, Bodenkundliche Standortbeurteilung—Kennzeichnung, Klassifizierung und Ableitung von Bodenkennwerten (normative und nominale Skalierungen). Beuth Verlag GmbH.

Dickson, M. H., & Fanelli, M. (2005). Geothermal energy: Utilization and technology. Earthscan.

Federal Agency for Cartography and Geodesy. (2020). Digitales Geländemodell Git-terweite 200 m (DGM200). Bundesamt Für Kartographie Und Geodäsie.

Galgaro, A., Di Sipio, E., Teza, G., Destro, E., De Carli, M., Chiesa, S., Zarrella, A., Emmi, G., & Manzella, A. (2015). Empirical modeling of maps of geoexchange potential for shallow geothermal energy at regional scale. Geothermics, 57, 173–184.

Hähnlein, S., Bayer, P., & Blum, P. (2010). International legal status of the use of shallow geothermal energy. Renewable and Sustainable Energy Reviews, 14(9), 2611–2625.

Hansen, J., Sato, M., Kharecha, P., Von Schuckmann, K., Beerling, D. J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M. J., Rohling, E. J., Shakun, J., Smith, P., Lacis, A., Russell, G., & Ruedy, R. (2017). Young people’s burden: Requirement of nega-tive CO<sub>2</sub> emissions. Earth System Dynamics, 8(3), 577–616.

IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)] (p. 151). IPCC.

Jess, A., Kaiser, P., Kern, C., Unde, R. B., & von Olshausen, C. (2011). Considerations concerning the Energy Demand and Energy Mix for Global Welfare and Stable Ecosystems. Chemie Ingenieur Technik, 83(11), 1777–1791.

Jocić, N., Müller, J., Požar, T., & Bertermann, D. (2020). Renewable Energy Sources in a Post-Socialist Transitional Environment: The Influence of Social Geographic Factors on Potential Utilization of Very Shallow Geothermal Energy within Heating Systems in Small Serbian Town of Ub. Applied Sciences, 10(8), 2739.

Johnsson, F., Kjärstad, J., & Rootzén, J. (2019). The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy, 19(2), 258–274.

Kersten, M. S. (1949). Thermal Properties of Soils. University of Minnesota, Institute of Technology, Engineering Experiment Station.

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., … Zhu, D. (2018). Global Carbon Budget 2017. Earth System Science Data, 10(1), 405–448.

Lu, Y., Lu, S., Horton, R., & Ren, T. (2014). An Empirical Model for Estimating Soil Thermal Conductivity from Texture, Water Content, and Bulk Density. Soil Science Society of America Journal, 78(6), 1859–1868.

Markert, A., Bohne, K., Facklam, M., & Wessolek, G. (2017). Pedotransfer Functions of Soil Thermal Conductivity for the Textural Classes Sand, Silt, and Loam. Soil Science Society of America Journal, 81(6), 1315–1327.

Markert, A., Peters, A., & Wessolek, G. (2016). Analysis of the Evaporation Method to Obtain Soil Thermal Conductivity Data in the Full Moisture Range. Soil Science Society of America Journal, 80(2), 275.

Oberste Baubehörde im Bayerischen Staatsministerium des Innern. (2010). Bauen und ländlicher Raum. Oberste Baubehörde im Bayerischen Staatsministerium des Innern.

Ondreka, J., Rüsgen, M. I., Stober, I., & Czurda, K. (2007). GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—Possibilities and limitations. Renewable Energy, 32(13), 2186–2200.

Rammler, M., Schwarz, H., Wagner, J., & Bertermann, D. (2023). Comparison of Meas-ured and Derived Thermal Conductivities in the Unsaturated Soil Zone of a Large-Scale Geothermal Collector System (LSC). Energies, 16(3), 1195.

REN21. (2019). Renewables 2019 Global Status Report. REN21 Secretariat.

Renger, M., Bohne, K., Facklam, M., Harrach, T., Riek, W., Schäfer, W., Wessolek, G., & Zacharias, S. (2008). Ergebnisse und Vorschläge der DBG-Arbeitsgruppe „Kennwerte des Bodengefüges “zur Schätzung bodenphysikalischer Kennwerte. TU Berlin.

Schwarz, H., Jocic, N., & Bertermann, D. (2022). Development of a Calculation Concept for Mapping Specific Heat Extraction for Very Shallow Geothermal Systems. Sustainability, 14(7), 4199.

Soltani, M., M. Kashkooli, F., Dehghani-Sanij, A. R., Kazemi, A. R., Bordbar, N., Farshchi, M. J., Elmi, M., Gharali, K., & B. Dusseault, M. (2019). A comprehensive study of geothermal heating and cooling systems. Sustainable Cities and Society, 44, 793–818.

Sponagel, H., Ad-hoc-Arbeitsgruppe Boden der Staatlichen Geologischen Dienste und der Bundesanstalt für Geowissenschaften und Rohstoffe, & Bundesanstalt für Ge-owissenschaften und Rohstoffe (Eds.). (2005). Bodenkundliche Kartieranleitung: Mit 103 Tabellen und 31 Listen (5., verbesserte und erweiterte Auflage). E. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller).

Stober, I., & Bucher, K. (2014). Geothermie. Springer.

Van Genuchten, M. Th. (1980). A Closed‐form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898.

Vereecken, H., Maes, J., Feyen, J., & Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci-ence, 148(6), 389–403.

Verein Deutscher Ingenieure. (2019). Thermische Nutzung des Untergrunds—Erdgekoppelte Wärmepumpenanlagen (VDI 4640 Blatt 2). Verein Deutscher Ingenieure.

Wessolek, G., Bohne, K., & Trinks, S. (2023). Validation of Soil Thermal Conductivity Models. International Journal of Thermophysics, 44(2), 20.

Wessolek, G., Kaupenjohann, M., & Renger, M. (Eds.). (2009). Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis. TU Berlin.

Zeh, R., Ohlsen, B., Philipp, D., Bertermann, D., Kotz, T., Jocić, N., & Stockinger, V. (2021). Large-Scale Geothermal Collector Systems for 5th Generation District Heating and Cooling Networks. Sustainability, 13(11), 6035.


  • There are currently no refbacks.