Assessing landslide susceptibility, analyzing and ranking causes. Case study of the north-eastern region of Bouira-Djebahia, Algeria

Naima Dilmi, Hynda Boutabba

Abstract


This study aims to use Sig-Ahm integration to assess the susceptibility to landslide risk in the municipality of Djebahia, located in the northwest of the province of Bouira (central Algeria). Using spatial data, this work is also intended to study the main factors that cause the risk of landslides in the study area. Five factors were considered in this research: slope, appearance, altitude, land use and vegetation cover, and drainage. These factors are weighted and ranked using the AHP method to generate a final map that represents the susceptibility of the study area to landslides. The map shows results at four levels, from very low to very high susceptibility.

Key words: susceptibility, landslides, AHM method, GIS, spatial data, Djebahia

? 2022?Serbian Geographical Society, Belgrade, Serbia.

This article is an open access article distributed under the terms and conditions of the?Creative Commons Attribution-NonCommercial-NoDerivs?3.0 Serbia.


Full Text:

PDF

References


Abay, A., Barbieri, G., & Woldearegay, K. (2019). GIS based Landslide Susceptibility Evaluation Using Analytical Hierarchy Process (AHP) Approach: The Case of Tarmaber District, Ethiopia. Momona Ethiopian Journal of Science, 11(1),14-36. https://doi.org/10.4314/mejs.v11i1.2

Adimi, O. S. C., Oloukoi, J., & Tohozin, C. A. B. (2018). Spatial modeling and multi-criteria assessment in the determination of suitable sites for maize production in Ou?ss?, Benin. La revue ?lectronique en sciences de l'environnement, 12(1), 253-265. https://doi.org/10.4000/vertigo.19885

Aditian, A., Kubota, T., & Shinohara, Y. (2018). Comparison of GIS-based landslide sus-ceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101?111. https://doi.org/10.1016/j.geomorph.2018.06.006

Akgun, A., & Bulut, F. (2007). GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51, 1377 1387. https://doi.org/10.1007/s00254-006-0435-6

Alc?ntara-Ayala, A. (2008). On the historical account of disastrous landslides in Mexico: the challenge of risk management and disaster prevention. Advances in Geosciences, 14, 159?164. https://doi.org/10.5194/adgeo-14-159-2008

Ayalew, L., & Yamagishi, H. (2004). Slope failure in the Blue Nile basin, as seen from landscape evolution perspective. Geomorphology, 57(1), 97-116. https://doi.org/10.1016/S0169-555X(03)00085-0

Ayenew, T., & Barbieri, G. (2005). Inventory of landslides and susceptibility mapping in the Dessie area, Northern Ethiopia. Engineering Geology, 77(1-2), 1-15. https://doi.org/10.1016/j.enggeo.2004.07.002

Bachri, S., Sumarmi, Irawan, L. Y., Utaya, S., Nurdiansyah, F. D., Nurjanah, A. E., Tyas, L. W. N, Adillah, A. A., & Purnama, D. S. (2019). Landslides Susceptibility Mapping (LSM) in Kelud Volcano Using Spatial Multi-Criteria Evaluation. IOP Conference Series: Earth and Environmental Science, 273, Article 012014. https://doi.org/10.1088/1755-1315/273/1/012014

Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Exploring model sensitivity issues across different scales in landslide susceptibility. Natural Hazards Earth System Sciences Discussions, 13, 2815?2831. https://doi.org/10.5194/nhessd-1-583-2013

Cevik, E, & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline. Hendek (Turkey). Environmental Geology, 44(8), 949?962. https://doi.org/10.1007/s00254-003-0838-6

Chen, W., Pourghasemi, H., & Zhao, Z. (2017). A GIS-based comparative study of dempstershafer, logistic regression and artificial neural network models for land-slide susceptibility mapping. Geocarto International, 32(4), 367?385. https://doi.org/ 10.1080/10106049.2016.1140824

Clerici, A., Perego, S., Tellini, C., & Vescovi, P. (2002). A procedure for landslide susceptibility 10 zonation by the conditional analysis method. Geomorphology, 48, 349?364.

Dai, F.C., & Lee, C.F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3-4), 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3

Dai, F.C., Lee, C.F., & Zhang, X.H. (2001). GIS-based geoenvironmental evaluation for urban land-use planning: a case study. Engineering Geology, 61(4), 257-271. https://doi.org/10.1016/S0013-7952(01)00028-X

Dilmi, N. & Boutabba, H. (2022). Assessing urban vulnerability to landslides using the Analytic Hierarchy Process (AHP): Case study of the municipal head of Djebahia in Algeria. Bulletin of the Serbian Geographical Society, 102(2), 185-200. https://doi.org/10.2298/GSGD2202185D

El Jazouli, A., Barakat, A, & Khellouk, R. (2019). GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er-Rbia high basin (Morocco). Geoenvironmental Disasters, 6(3). https://doi.org/10.1186/s40677-019-0119-7

Ercanoglu, M., Gokceoglu, C., & Van Asch, T. W. J. (2004). Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Natural Hazards 32(1), 1?23. https://doi.org/10.1023/B:NHAZ.0000026786.85589.4a

Kayastha. P., Dhital, M. R., De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398?408. http://dx.doi.org/10.1016/j.cageo.2012.11.003

Lee, S., Choi, J., & Min, K. (2004). Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. International Journal of Remote Sensing, 25(11), 2037?2052. https://doi.org/10.1080/01431160310001618734

Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Earth Sciences, 40(9), 1095?1113. https://doi.org/10.1007/s002540100310

Lee, S. (2005). Application and cross-validation of spatial logistic multiple regression for landslide susceptibility analysis. Geoscience, 9(1), 63-71. https://doi.org/10.1007/BF02910555

Mezughi, T. H., Akhir, J. M., Rafek, A. G & Abdullah, I. (2012). Analytical Hierarchy Process method for mapping landslide susceptibility to an area along the E-W highway (Gerik-Jeli), Malaysia. Asian Journal of Earth Sciences, 5(1), 13-24. https://doi.org/10.3923/ajes.2012.13.24

Noorollahi, Y., Sadeghi, S., Yousefi, H., & Nohegar, A. (2018). Landslide modelling and susceptibility mapping using AHP and fuzzy approaches. International Journal of Hydrology, 2(2), 137? 148. https://doi.org/10.15406/ijh.2018.02.00063

Nourani, A, Kaci, F.., & Bouayiz, M., (2016). Analyse hi?rarchique multicrit?res pour ?valuer des ?l?vateurs ? nacelles intervenant au sommet de palmier dattier. Revue Agriculture, 12, 4-11.

Payne, A. I. L., Cotter, J., & Potter, T. (2009). Advances in Fisheries Science: 50 Years on From Beverton and Holt. John Wiley & Sons.

Pourghasemi, H.R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Harazwatershed, Iran. Natural Hazards, 63, 965?996.

Pradhan, B., Sezer, E., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron High-land, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164?4177. https://doi.org/10.1109/TGRS.2010.2050328

Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation - with a case study in the Himalayas. Landslides, 2, 61-69.

Taleb, H. A. (2019). Generalites sur les glissements des terrains. https://www.researchgate.net/publication/331983733_

Temesgen, B., Mohammed, M. U., & Korme, T. (2001). Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia. Physics and Chemistry of the Earth, 26(9), 665-675. https://doi.org/10.1016/S1464-1917(01)00065-4

Thanh, L. N., & De Smedt, F. (2012). Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environmental Earth Science, 66, 1739-1752. https://doi.org/10.1007/s12665-011-1397-x

Wilde, M., G?nther, A., Reichenbach, P., Malet, J. P., Herv?s, J. (2018). Pan-European landslide susceptibility mapping: ELSUS Version 2. Journal of Maps, 14(2), 97?104. https://doi.org/10.1080/17445647.2018.1432511

Woldearegay, K. (2005). Rainfall-triggered landslides in the northern highlands of Ethiopia: Characterization, GIS-based Prediction and Mitigation [PhD Thesis, Faculty of Civil Engineering, Graz University of Technology].

Yalcin, A. (2007). Environmental impacts of landslides: a case study from East Black Sea region, Turkey. Environmental Engineering Science, 24(6), 821-833.

Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85, 274-287. https://doi.org/10.1016/j.catena.2011.01.014

Zhou, J-W., Cui, P., & Fang, H. (2013). Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides, 10, 331?342. https://doi.org/ https://doi.org/10.1007/s10346-013-0387-3


Refbacks

  • There are currently no refbacks.